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Abstract 

 

Similarity/dissimilarity measurement plays a crucial role in 

information/component/service retrieval and integration. In this paper, we define a 

novel logic based semantic similarity/dissimilarity measure that tries to estimate a 

pseudo ideal similarity metric based on Description Logic based descriptions of 

concepts in ontologies in order to fulfill the requirements for similarity measurement 

in the field of web service retrieval (i.e. web services matching and composition). Our 

proposed semantic similarity measure defined and represented as a set of rules, 

considers the direction in comparing two concepts which may be from different 

ontologies and it computes the similarity/dissimilarity between two concepts by the 

extent to which the second concept includes instances which are also included by the 

first concept. It can handle the expressivity of highly expressive Description Logic 

based ontology languages such as OWL DL to a considerable extent. We also 

conceptually compare our proposed measure with other similar methods in the target 

application area.           

Keywords: Inter-concept Similarity/Dissimilarity, Overlap between Concepts, Description 

Logics, Ontology, Similarity Measure, Semantic Matching, Web Service Composition  

 

1. Introduction  

In the presented research, we have focused on a sort of logic based semantic 

similarity/dissimilarity measures that is suitable to be used for semantic matching 

of web services in order to automatically compose new web services by 

discovering and integrating the existing ones.  For automating the process of web 

services matching and composition, we need to semantically describe web 

services using ontology languages. Currently, web services besides their syntactic 

specifications or descriptions by standard syntactic models such as WSDL, are 

semantically specified or described by standard semantic models such as OWL-S 

and SAWSDL [16, 35]. Intuitively, an effective matching of web services 

involves considering all of their functional and non-functional requirements 

specified in their descriptions and interfaces, but the most crucial part of web 



services matching is their signatures matching (i.e. inputs, outputs, preconditions, 

and effects). So, in our research we have only focused on web services 

input/output matching for web service composition when the inputs and outputs of 

web services have been semantically described in ontologies [2, 13, 16, 18, 23, 25, 

29].    

So far, many similarity measures have been proposed in the literature [25]. 

In our research, we have only focused on logic based semantic similarity 

measures. As demonstrated in our previous research paper [25], in order to 

improve the process of semantic matching of web services, the semantic 

similarity/dissimilarity measures generally need to measure the extent to which 

the second concept includes instances which are also included by the first concept. 

Logic based semantic similarity measures can be perfect for computing the 

similarity between concepts in the field of web service retrieval if and only if they 

can adequately handle the expressivity of the used ontology language in order to 

estimate the pseudo ideal similarity metric introduced in Section 2 [25].  Hence, in 

this paper, we propose a logic based semantic similarity measure as a set of 

descriptor-specific rules which tries to estimate the ideal similarity metric as 

precise as possible based on OWL descriptions of concepts in ontologies.   

In the next section, we review the theoretical background to our research 

regarding Web Services, Ontologies, and Description Logics (DL). In Section 3, 

we define and present our novel DL-based semantic similarity/dissimilarity 

measure. In Section 4, we conceptually discuss and compare the proposed 

measure with other methods. Finally in Section 5, we conclude this paper with 

several issues that need further investigation and the future works.  

2. Background: Web Services, Ontologies, and Description Logics  

In our previous work presented in [25], we investigated the problem of 

matching web services with each other in order to integrate them and compose a 

new web service. We analyzed such a complicated problem in order to deduce the 

requirements for similarity measurement in the field of web service retrieval. Our 

analysis led to defining a “pseudo ideal similarity metric” which ideally expresses 

the requirements for similarity measurement in the field of web service retrieval 

using mathematical symbols whereas it cannot be generally actually computed. 

Because it is defined using operators of set theory such as union, intersection, 

difference, and specifically the cardinality or size of sets that are not directly 



computable since they are applied to ontology concepts that are considered as 

subsets of the interpretation domain objects i.e. Δ� that is undetermined. The ideal 

similarity metric was defined as follows [25]: 

DD(�, �, Ι)      = 
|��	∪	��|	
	|��	∩	��| * 

|��	
	��|	
	|��| ;                                                     (2.1) 

MHD(�, �, Ι)   = Minimum hierarchical distance between � and �;     (2.2) 

Dissim(�, �, Ι) = DD(�, �, Ι) + MHD(�, �, Ι);                                      (2.3) 

Sim(�, �, Ι)      = 
�

��	������(�,			�,			�)	 ;   �	 > 0 : adjustable factor        (2.4)    

Where � and � are concepts from the same or different ontologies. Based on 

an interpretation like Ι = (Δ�, φ�) for the ontology (or ontologies), � is mapped to 

�� and � is mapped to ��. |A| denotes the size of the set A.  Sim(�, �, Ι) and 

Dissim(�, �, Ι) denote the semantic similarity and dissimilarity from A to B 

respectively. MHD(�, �, Ι) denotes the minimum hierarchical distance between A 

and B in the ontological hierarchy after classification. Dissim(�, �, Ι) and     

Sim(�, �, Ι) can be converted to each other using Equation 2.4. � is an adjustable 

factor [25].      

We defined the pseudo ideal similarity metric to only make our approach to 

similarity measurement more understandable by specifying the semantics of 

similarity (values) based on which the similarity has to be computed by web 

service matchmakers/composers in the field of web service retrieval. In other 

words, in order to improve the process of semantic matching of web services, the 

used semantic similarity/dissimilarity measure has to try to estimate the 

introduced ideal similarity metric that means it has to compute the similarity 

between concepts by the extent to which the second concept includes instances 

which are also included by the first concept. When we speak about the estimation 

of such a pseudo ideal measure, we just mean doing computations which lead to 

the values with the semantics represented by this pseudo ideal measure 

considering what it really tries to measure. So, comparing a computable logic 

based similarity measure with this ideal measure in order to investigate how much 

imprecision we get, is meaningless. In other words, we can only compare 

computable logic based measures with each other to investigate how well they are 

able to estimate the ideal measure relative to each other. It is clear that such 

similarity/dissimilarity measures are asymmetric and consider the direction. Also, 

such a matching approach considers the state in which two concepts (classes) 



overlap, as a level of match higher than the disjoint level even if none of the two 

concepts subsumes the other. Most of approaches to semantic matching are based 

on subsumption reasoning and do not consider such states as a level of match [2, 

5, 10, 16, 21, 23, 38]. Also, a good similarity measure has to be able to handle the 

expressivity of the description logics used for describing web service parameters 

i.e. web service Inputs, Outputs, Preconditions, and Effects (IOPEs) in ontologies 

[16, 17, 28]. Hence, in the presented research, we have focused on the problem of 

computing the similarity/dissimilarity between two concepts in order to define a 

novel sophisticated computable logic based similarity/dissimilarity measure which 

tries to estimate the pseudo ideal similarity metric based on DL based descriptions 

of concepts in ontologies and therefore it is suitable to be used in semantic 

matching of web services for web service composition.   

In some research papers, the existing semantic similarity/dissimilarity 

measures have been divided into measures for concepts from the same ontology 

and measures for concepts from different ontologies [37, 40]. A fully-automatic 

method for computing the similarity/dissimilarity between concepts from different 

ontologies is desired, but our proposed measure, presented in the next section, is 

based on a semi-automatic approach for concepts from different ontologies since 

the experts of the ontologies need to check and investigate the subsumption 

relations between properties and primitive concepts from different ontologies and 

then set some probability parameters for configuring the proposed measure 

(Please refer to Section 3 for details). So, our proposed measure has been devised 

in a way that is able to compute the similarity/dissimilarity between concepts from 

the same or different ontologies both.      

The semantic similarity/dissimilarity between concepts is computed based on 

their semantic descriptions in ontologies. Thus far many ontology languages have 

been proposed and standardized such as RDF(S) and OWL for defining concepts 

and their conceptual relations in ontologies. Despite the apparent differences, 

many of the current ontology languages can be regarded as tractable and decidable 

subsets of Description Logics. In our research, we narrowed our focus to OWL 

ontology language, because Description logics form its formal foundation and 

OWL has been being endorsed by the semantic web initiative [22]. In 2009, W3 

Consortium produced a recommendation for a new version of OWL which adds 

features to the 2004 version, while remaining compatible. Some of the new 



features are syntactic sugar while others offer new expressivity, including: keys, 

property chains, richer datatypes and data ranges, qualified cardinality restrictions, 

and asymmetric, reflexive, and disjoint properties [22]. While handling the 

expressivity of more expressive DL-based ontology languages such as OWL 2 is 

desired for computing the similarity/dissimilarity between concepts, but it can be 

achieved by long term, ongoing research efforts [11, 12, 28].  

In this paper, we present a similarity/dissimilarity measure which tries to 

handle the expressivity of OWL DL to a considerable extent. OWL DL is one of 

the three sub-species of OWL 1 and it is based on ����  DL. Let CN denotes a 

concept name, C and D are arbitrary concepts, ! is a property, n is a non-negative 

integer,	d and #$ (1 ≤ i ≤ n) are instances, and & and ∅ denote the top (i.e. Thing) 

and the bottom (i.e. empty class) respectively. Then, a ����  concept is [9, 22, 

28]:    

CN | C ⊓ D | C ⊔ D |- C | ∃!. , | ∀!. , | ∋ !. d | =0 !. & | ≥0 !. & | ≤0 !. & | {#2, . . . , #0} 

OWL Construct Formal Representation 

owl:equivalentClass ,2 ≡ ,4  

owl:disjointWith ,2 ⊥ ,4  

owl:complementOf ,2 ≡ −,4  

owl:subClassOf ,2 ⊑ ,4  

 owl:intersectionOf ,2 ⊓	,4  

owl:unionOf ,2 ⊔	,4  

owl:minCardinality ≥0 !. &  

owl:maxCardinality ≤0 !. &  

owl:cardinality =0 !. &  

owl:allValuesFrom ∀	!. 8  

owl:someValuesFrom ∃	!. 8  

owl:hasValue ∋ !. d  

Table 2.1 – OWL constructs and their formal representations  

 

In Table 2.1, the formal representations of the most important constructs in 

OWL ontology language are shown [9, 28]. In this table, ,2, ,4, and 8 are 

concepts (classes),	! is a property, & is the top (Thing), d is an instance, and 9 is a 

non-negative integer.  

3. The proposed similarity/dissimilarity measure 

3.1. Case Study 

In order to make the rules more understandable, we present a case study 

as a detailed example on how the introduced rules are applied to compute the 



similarity/dissimilarity between concepts. The hierarchical structure of the 

exemplary ontology has been depicted in Picture 3.1.  

Assume that: � ≡ Organization, � ≡ Legal Entity, 8 ≡ Client,           

: ≡ Company, ! ≡ WorkFor, � ≡ ProvideServiceTo, d2 ≡ TPS IT Company, 

d4 ≡ Turan Designers Inc., d; ≡ Iran Cell Inc.  So, we have (T is the ontology 

root i.e. Thing): MHD(D, T) = 2, MHD(E, T) = 3, MHD(E, D) = 1, � ⊏ !, 

MHD(!, �) = 1. Also, We do not have any explicit or inferred statement in the 

ontology representing any of the following facts: E	 ⊑ D, D	 ⊑ E, � ⊑ �, 

D ⊑ �. Also,  for simplification we consider the ranges of � and ! to be T. 

 

Picture 3.1 – The hierarchical structure of an ontology which is used for demonstrating the 

applicability of our proposed semantic similarity measure.  

 

Assume that , 2 is an Organization which operates as a Legal Entity or 

as a client in Iran. It only works for companies. It works for at least one entity 

and works for at least one company. It provides some services to TPS IT 

Company, and also provides some services to Turan Designers Inc. We can 

logically define , 2 as follows:  

, 2 = �	 ⊓ (� ⊔ 8) ⊓	∀!. :	 ⊓	∃!. :	 ⊓	∋ S. d2 ⊓	∋ �. d4 ⊓ (≥2 !. &)   
 Assume that , 4 is an Organization which operates as a Legal Entity or 

a non-organized group. It only provides services to companies and only works 

for clients. It provides services to at least five entities. It also provides services 



to at least one client. It also works for Iran Cell Inc. We can logically define 

, 4 as follows:   

, 4 = �	 ⊓ (� ⊔ −�) ⊓	∀�. :	 ⊓ 	∀!. 8	 ⊓ 	∃�. 8 ⊓	∋ !. d; ⊓ (≥A �. &)   
Also, we assume: MHD(�, , 2) = 3, MHD(�, , 4) = 2, MHD(�, , 2) = 4, 

MHD(�, , 4) = 2.  

3.2. Definition of an alignment for concept descriptors 

After the canonization process introduced and proposed in our previous 

research paper [25], each generated model of a concept description can be 

represented in a canonical form as follows (Please refer to [25] for details and 

explanations):   

ℒC(DEF$) = {	,$2, ,$4, … , ,$0I , J∀R2. G�2M2, J∀R4. G�4M2, … , J∀RN. G�NM2,	 
J∃R2. H�2	| 	 ∋ R2. d�2MP, J∃R4. H�4	| ∋ R4. d�4MP, … , J∃RN. H�N	| ∋ RN. d�NMP,
Q≥RS R2. &	TT=US R2. &V2, Q≥RW R4. &	TT=UW R4. &V2, … , Q≥RX RN. &	TT=UX RN. &V2,
Q≤YS R2. &	TT=US R2. &V2, Q≤YW R4. &	TT=UW R4. &V2, …	 , Q≤YX RN. &	TT=UZ RN. &V2, 

 	J−8M2, J{#2, . . . , #[}M2}	       (3.1)       

And the two compared concepts , 2 and , 4 can be represented as follows: 

, 2 	= (ℒC]DEFS2^, ℒ
C]DEFS4^, …	, ℒ

C]DEFS0^)	  
, 4 	= (ℒC]DEFW2^, ℒ

C]DEFW4^,…	 , ℒ
C]DEFWR^)	  

Where ℒC]DEFS$^ (1 ≤ ` ≤ 9) and ℒC]DEFWa^ (1 ≤ b ≤ c) are the models 

generated for the two compared concepts , 2 and , 4 respectively. In our 

approach, each model of the first concept will be compared with every model 

of the second concept, and then among the c × 9 results obtained for 

similarity/dissimilarity, the result with the least value for dissimilarity or the 

most value for similarity will be used for computing the final 

similarity/dissimilarity value between the two concepts.   

Each model of a concept ,  can be also regarded as a specific 

interpretation or a specific subset of the interpretations of the original 

description of , . So, when we select two models from the model sets of the 

two compared concepts in order to compare them with each other, in fact we 

select two specific interpretations or two specific subsets of the interpretations 

of the two concepts to compare them with each other. Hence, when we finally 

choose the result with the least value for dissimilarity from all the results 



obtained from comparing the models of the two concepts, in fact we choose 

those interpretations which lead to the least value for dissimilarity of the two 

concepts. We stated this fact to illustrate the relation between our proposed 

computable measure and the ideal measure introduced in Section 2 since the 

definition of the ideal measure shows that similarity/dissimilarity depends on 

the interpretation chosen for ontologies [25].     

Assume that	8`ee`c(, 2, , 4) is the dissimilarity from CN2 to CN4, 

Dissim(ℒC]DEFS$^, ℒ
C]DEFWa^) is the dissimilarity from ℒC]DEFS$^ to 

ℒC]DEFWa^ that can be shortly represented as Dissim�k which is computed using 

the descriptor-specific rules of our proposed measure presented in Section 3.3, 

and MHD(ℒC]DEFS$^, ℒ
C]DEFWa^) is the minimum hierarchical distance 

between ℒC]DEFS$^ and ℒC]DEFWa^ in the ontological hierarchy after 

classification that it can be shortly represented as MHD�k. Then we define 

8`ee`c(, 2, , 4) as follows:   

8`ee`c(, 2, , 4) = m`9	2n$n0,			2nanR (8`ee`c$a +  m�8$a)      (3.2) 
If , 2 and , 4 are from the two different ontologies �2 and �4 

respectively and T(�2) and T(�4) are the roots of these two ontologies, then 

MHD�k can be computed as follows: 

m�8$a  = |MHD(ℒC]DEFS$^, T(�2) ) - MHD(ℒC]DEFWa^, T(�4) )|    (3.3) 
Or a more perfect computational scheme be used based on the depth or 

granularity of the respective ontological hierarchies. In our research, we have 

not focused on such alignment schemes and leave it with the above simple 

scheme. If , 2 and , 4 are from the same ontologies, then MHD�k is 

computed by the following equation (� is a primitive concept existing in both 

compared models):  

m�8$a = m`9	o	∈	ℒq]rstSI^,			o	∈	ℒq]rstWu^(|MHD(�, , 2) - MHD(�, , 4)|)  (3.4) 

We use MHD�k in Equation (3.2) to differentiate two concepts which 

cannot be adequately differentiated just by comparing their semantic 

descriptions in ontologies [28]. For instance, if we have A ⊏ B	 ⊏ 	C, then the 

semantic dissimilarity between A and C must be more than the dissimilarity 

between A and B. But these may not be adequately differentiated by the values 



computed for Dissim�k. For example, if A, B, and C are primitive concepts, we 

are not able to differentiate them using the descriptor-specific rules of our 

measure presented in Section 3.3. Hence, MHD complements our logic based 

structural measure particularly in situations that concepts are not adequately 

described in ontologies. We may also need to convert the dissimilarity to the 

similarity using an equation like the one below [37] which was also introduced 

in the definition of our pseudo ideal measure in Section 2 [25]:     

S`c(, 2, , 4) = �
��	������(xyS,xyW)	  , 	> 0 : μ is an adjustable factor. (3.5) 

In this step, we also need to specify how the various types of descriptors 

from two compared models are aligned for comparison. In our approach, 

descriptors which have more effect on the logical interpretation of each other 

are considered for comparison with each other. In this way, primitive concepts 

and negations (i.e. disjoint concepts) are considered as the first category of 

descriptors to be compared with each other, the value and existential 

restrictions represented as ∀R. G, ∃R. G, and ∋ R. d are considered as the 

second category, and cardinality related restrictions represented as ≥{ R. T, 

≤{ R. T , or  ={ R. & are considered as the third category. Our proposed 

measure is not able to handle the descriptors of properties (roles) such as ones 

which are described as transitive, symmetric, functional, or inverse functional 

properties while they may affect the logical interpretation of other types of 

descriptors. Such descriptors are a part of some expressive DL-based ontology 

languages such as OWL-DL, but handling them based on our introduced ideal 

measure is beyond the scope of this research. We do not also claim that 

descriptors from different categories do not have any effect on the logical 

interpretation of each other, but we naturally want and need to reasonably 

make simple the complicated problem of computing similarity/dissimilarity 

between concepts. Such a categorization can be justified considering the facts 

that each type of descriptors states. For instance, the value and existential 

restrictions state facts about the values of properties while the cardinality 

related restrictions say facts about the number of properties with the same type 

that any instance of a concept can have. The alignment explained above, has 

been reflected in the descriptor specific rules presented in the next section. To 

explicitly say, the condition parts of those rules somewhat reflect the 



aforementioned alignment and show which types of descriptors are considered 

for comparison with each other. 

Considering our case study, first we need to convert the concept 

descriptions into their canonical form and find all the possible models of them 

using the canonization rules presented in our previous research paper [25]:    

ℒC]DEFS2^ = {�, �, ∀!. :, ∃!. :, ∋ S. d2, ∋ �. d4, ≥2 !. &}  
ℒC]DEFS4^ = {�,8, ∀!. :, ∃!. :, ∋ S. d2, ∋ �. d4, ≥2 !. &}    
ℒC]DEFS;^ = {�, �, 8, ∀!. :, ∃!. :, ∋ S. d2, ∋ �. d4, ≥2 !. &}       
ℒC]DEFW2^ = {�, �, ∀!. 8, ∀�. (8 ⊓ :), ∃�. (8 ⊓ :), ∋ !. d;, ≥A �. &}          
ℒC]DEFW4^ = {�,−�, ∀!. 8, ∀�. (8 ⊓ :), ∃�. (8 ⊓ :), ∋ !. d;, ≥A �. &} #(clash:�,−�)    

ℒC]DEFW;^ = {�, �, −�, ∀!. 8, ∀�. (8	 ⊓ :), ∃�. (8 ⊓ :), ∋ !. d;, ≥A �. &} #(clash:�,−�)         

The ℒC]DEFW4^ and ℒC]DEFW;^ models are not satisfiable, so they are 

ignored within the next step where we use the descriptor-specific rules of our 

proposed measure to compare the models of the two concepts.  

3.3.  Application of descriptor specific dissimilarity functions 

We have followed heuristic methods to invent a number of rules which 

can be collectively used for estimating the pseudo ideal measure introduced in 

Section 2 [25]. We justify these rules by explaining how they try to estimate 

the introduced ideal measure from their particular descriptor-specific 

perspectives. Considering these rules, overall dissimilarity between the two 

models ℒC]DEFS$^ and ℒC]DEFWa^ (i.e.	Dissim�k) is gradually computed by 

executing the rules presented in this section that handle various types of 

descriptors. α� (1≤ i ≤14), m2, m4, }2, and }4 are adjustable factors which 

have been used in the equations of the rules and explained in detail at the end 

of this section. Most of these rules are asymmetric relative to the two 

compared models, because we want to measure the extent to which the second 

model includes instances which are also included by the first model and not 

vice versa. In the equations of these rules, the value of  
~
�  with a	 > 0 and        

b = 0, is considered as infinite (∞), the value of  
~
��  with a = ∞, b = ∞, and 



β	 > 1,  is considered as 0, and the value of a ∗ b  with a = ∞ and b = 0,  is 

considered as 0.  

First, let we explain the notion behind all of these rules. Essentially, each 

descriptor in the semantic description of a concept makes some restrictions for 

the domain instances in being instances of that concept so that some instances 

can be instances of that concept and some others cannot be instances of that 

concept. By using the rules presented in this step, we compare descriptors 

from the descriptions of two concepts in order to determine whether a 

descriptor in the description of the second concept in comparison with a 

descriptor in the description of the first concept, makes the instances set 

defined by the second concept more restricted than the instances set defined by 

the first concept or not, and if so, how much it is more restricted. So, by 

comparing two concept descriptions in this manner, we actually try to estimate 

the introduced ideal measure based on logic based descriptions of concepts in 

ontologies. As examples, consider the following states:  

1) If there is a min-cardinality restriction like ≥R R. & in the description of 

the first concept and a min-cardinality restriction like ≥0 R. & in the 

description of the second concept and we have c < 9, then we can deduce 

that the second concept is more restricted than the first concept from the 

perspective of these two descriptors and as a result, such descriptors 

reduce the chance for the second concept to include more instances which 

are also included by the first concept. This is also true if there is a max-

cardinality restriction like ≤R R. & in the description of the first concept 

and a max-cardinality restriction like ≤0 R. & in the description of the 

second concept and we have c > 9. Also, if there is a min-cardinality 

restriction like ≥R R. & in the description of one concept and a max-

cardinality restriction like ≤0 R. & in the description of the other concept 

and we have c > 9, then the two concepts cannot have any common 

instance and are disjoint. Rule 10 handles such states in comparing two 

role cardinality related descriptors.  

2) If there is a value restriction like ∀R. � in the description of the first 

concept and a value restriction like ∀R.�  in the description of the second 

concept and we have � ⊏ �, then we can deduce that the second concept 



is more restricted than the first concept from the perspective of these two 

descriptors and as a result, such descriptors reduce the chance for the 

second concept to include more instances which are also included by the 

first concept. Rules 6, 7 and 8 handle such states in comparing two value 

or existential restriction descriptors.    

3) The states will be more complicated if we compare role restrictions with 

two different roles like � and ! when � ⊏ !, for examples when we 

compare ≥R R. & and ≥0 S. &, or when we compare ∀R. �  and ∀S. �. For 

instance, if we have ≥9 S. & and S ⊑ R	, then we can logically deduce that 

≥9 R. &, but if R ⊏ S, we cannot deduce any minimum cardinality 

restriction on R considering ≥9 S. &. Hence, when we compare ≥R R. & 

from the description of the first concept and ≥0 S. & from the description 

of the second concept, in the first state (i.e., S ⊑ R), the two restrictions are 

logically interconnected with respect to our introduced ideal measure since 

we can deduce ≥0 R. & from ≥0 S. &, and therefore considering the fact 

that ≥0 R. & may restrict the second concept more than what ≥R R. & 

restricts the first concept (i.e., if 9 > c), we have to compare the two 

descriptors, but in the second state (i.e., R ⊏ S), since we cannot deduce 

any fact about minimum cardinality of R from ≥0 S. &, comparison 

between the two descriptors cannot show whether the second concept is 

more restricted than the first concept from the perspective of these two 

descriptors or not, hence in the second state (i.e., R ⊏ S), the comparison 

does not have to be done. This fact can also be considered in the case of 

value restrictions. Because when we have ∀R. � and S ⊑ R	, then we can 

logically deduce that ∀S. �, but if R ⊏ S, we cannot deduce any value 

restriction on S from ∀R. �. Rule 5 has been devised for comparing roles 

with respect to subsumption relation between them. The dissimilarity 

values between roles, resulted from executing Rule 5, are used in Rules 6, 

7, 8, 9, and 10 which handle various types of restrictions on roles and are 

also able to handle the complexities exemplified above.        

Each descriptor-specific rule tries to estimate the introduced ideal 

measure from the perspective of some specific types of descriptors. Rule 1 

compares the primitives of two models with respect to subsumption relation. 



Rule 2 compares the primitives of two models with respect to disjoint relation. 

Rule 3 compares the primitives of one model with disjoints of the other one. 

Rule 4 compares the disjoints of two models. Rule 5 compares roles with 

respect to subsumption relation. Rule 6 compares the value restrictions (i.e., ∀) 

of two models. Rule 7 compares the value restrictions of one model with 

existential restrictions (i.e., ∃) of the other one. Rule 8 compares the 

existential restrictions of two models. Rule 9 compares the property-value 

existence restrictions (i.e., ∋) of two models. Rule 10 compares the role 

cardinality related restrictions (i.e., ≥RX &	 ≤YX &	 =UX) of two models. Rule 

11 compares the enumerations of two models. In order to use the rules, we 

need to assign values to the adjustable factors. So, we assign the following 

values to them in our case study:     

α2= 3, α4 = 1, α; = 7, α� = 5, αA = 1, α� = 2, α� = α� = 1, α� = α2� = 2,         

α22 = α24 = α2; = α2� = 1, }2 = 0.5, }4 = 2, m2 = 5, m4 = 15 

The above assignment is based on our intuition and the mathematical 

structure of the equations used in the rules as discussed at the end of this 

section.  

Rule 0 - Action:  Dissim�k ≔ 0 

Considering our example:   Dissim22 =	0;  Dissim42 =	0;  Dissim;2 =	0;  

 

Rule 1 (Subsumption between primitives)     

,2	 ∈ 	ℒC]DEFWa^                                                             
δES	 = P(∄,4	. (,4 ⊑ ,2	) ∈ 	ℒC]DEFS$^)      ⇒  Dissim�k ≔	Dissim�k + α2δES	    
,2	, ,4:	��`c`�`��                                             ,  α2 	≥ 0           

P(s) is the probability function. 

Explanation and Justification:   

C2	 is a primitive concept in the definition of the ℒC]DEFWa^ model. δES	is 

the probability for non-existence of any primitive concept like ,4	 in the 

definition of the ℒC]DEFS$^ model that is subsumed by ,2 and such a 

subsumption either has been explicitly stated in the ontology or can be 

inferred. If the two compared concepts , 2 and , 4 are from the same 

ontology, we have δES	= 1 or δES	= 0, because we can make sure of the 

existence or non-existence of a concept like ,4	 ∈ 	ℒC]DEFS$^ that ,4 ⊑ ,2	by 



reasoning or considering the explicit statements of the ontology, otherwise 

δES	can be determined by experts of the two ontologies. Non-existence of any 

concept like ,4	 ∈ 	ℒC]DEFS$^ that ,4 ⊑ ,2	, can be interpreted as the less 

chance for ℒC]DEFWa^ to include more instances which are also included by 

ℒC]DEFS$^, and therefore we add the value of δES	α2 to Dissim�k to increase the 

dissimilarity between models. This rule is executed once for each primitive 

concept in the definition of the second model. Considering our exemplary 

ontology, we have (P(s) is the probability function):      

Dissim(E, T) = Dissim(ℒC(x�),			ℒC(x�)) + m�8(ℒC(x�),			ℒC(x�)) =     

α2	P(E ⋢ T) + m�8(E, T) = α2 × 0 + 3 = 3;  

Dissim(T, D) = Dissim(ℒC(x�),			ℒC(x�)) + m�8(ℒC(x�),			ℒC(x�)) =     

α2	P(T ⋢ D) + m�8(D, T) = α2 × 1 + 2 = 5;  

Dissim(T, (8	 ⊓ :)) = Dissim(ℒC(x�),			ℒC(x�	⊓�)) + m�8(ℒC(x�),			ℒC(x�	⊓�)) 
= α2	P(T ⋢ D) + α2	P(T ⋢ E) + m�8(T, (8	 ⊓ :)) = α2 × 1 + α2 × 1 + 3 = 9;    

Dissim(E, D) = Dissim(ℒC(x�),			ℒC(x�)) + m�8(ℒ′(xE),			ℒ′(xD)) =       

α2	P(E ⋢ D) + m�8(E, D) = 3×1+ 1 = 4;       

Dissim(E, (8	 ⊓ :)) = Dissim(ℒC(x�),			ℒC(x�	⊓�)) + m�8(ℒC(x�),			ℒC(x�	⊓�)) 
= α2	P(E ⋢ D) + α2	P(E ⋢ E) + m�8(E, (8	 ⊓ :)) = α2 × 1 + α2 × 0 + 1 = 4;     

Dissim((8	 ⊓ :), :) = Dissim(ℒC(x�	⊓�),			ℒC(x�)) + m�8(ℒC(x�	⊓�),			ℒC(x�)) 
= α2	P(: ⋢ :	⋀	8 ⋢ :) + 1 = α2 × 0 + 1 = 1;      

Dissim42: = Dissim42 + α2P(� ⋢ �	⋀	D ⋢ �) = α2 × 1= 3;  

 

Rule 2 (disjoint primitives)    

,2	 ∈ 	ℒC]DEFS$^                                                        
δ
C
ES	 = P(∃,4	. (,2	 ⊑ −,4	) ∈ 	ℒC]DEFWa^)      ⇒  Dissim�k ≔ Dissim�k +	 ¢W	δ

q
sS	

2	
		δqsS		
 

,2	, ,4	: ��`c`�`��                                                 ,  α4 	≥ 0     

P(s) is the probability function. 

Explanation and Justification:  

C2	 is a primitive concept in the definition of the ℒC]DEFS$^ model. δ
C
ES	is the 

probability for existence of a primitive concept like ,4	 in the definition of the 



ℒC]DEFWa^ model that is disjoint with ,2	. If the two compared concepts , 2 and 

, 4 are from the same ontology, we have δ
C
ES	= 1 or δ

C
ES	= 0, because we can 

make sure of the existence or non-existence of a concept like ,4	 ∈ 	ℒC]DEFWa^ that 

,2	 ⊑ −,4	 by reasoning or considering the explicit statements of the ontology, 

otherwise δ
C
ES	can be determined by experts of the two ontologies. If there is a 

concept like ,4	 ∈ 	ℒC]DEFWa^ that ,2	 ⊑ −,4	, then the two models ℒC]DEFS$^ and 

ℒC]DEFWa^ do not have any common instance and they are disjoint, so according to 

our ideal measure, the dissimilarity between them must be infinite. The same result 

is accordingly yielded using this rule. If δ
C
ES	= 1, then Dissim�k is infinite, and if 

δ
C
ES	= 0, then nothing is added to the previous value of Dissim�k. Generally, we add 

the value of  
¢W	δqsS	
2	
		δqsS	 	

 to the previous value of Dissim�k. This rule is executed once 

for each primitive concept in the definition of the first model. 

Rule 3 (£¤¥¦¥§¥¨©ª	&	«¥ª¬­¥®§ª)      

¯, ∈ 	ℒC]DEFS$^ 	∧ 	∃ − 8	 ∈ 	ℒ
C]DEFWa^±	  

⋁¯, ∈ 	ℒC]DEFWa^ 	∧ 	∃ − 8	 ∈ 	ℒ
C]DEFS$^±      ⇒    

,: ��`c`�`��    

                                        Dissim�k ≔	Dissim�k + ¢³
������(E,			�)
´µ�(E,			�) , α; 	≥ 0            

Explanation and Justification:  

Considering the two models ℒC]DEFS$^ and ℒC]DEFWa^ and a primitive 

concept like C in the definition of one of the two models, if there is a disjoint like 

−8 in the definition of the other model, then the value of 
¢³

Dissim(,,			8)−m�8(,,			8) is 

added to the previous value of Dissim�k. The less value of Dissim(,,			8) −
m�8(,,			8) can be interpreted as the less chance for ℒC]DEFWa^ to include more 

instances which are also included by ℒC]DEFS$^, and therefore the more the value 

which has to be added to the previous value of Dissim�k. For instance, if C is 

subsumed by 8, then the two models ℒC]DEFS$^ and ℒC]DEFWa^ do not have any 

common instance and they are disjoint, so according to our introduced ideal 

measure, the dissimilarity between them must be infinite. The same result is 



accordingly yielded using this rule. Dissim(,,			8) is computed using our 

descriptor specific rules. Considering Equation 3.2, we always have 

Dissim(,,			8) ≥ m�8(,,			8), and considering the canonical form of the 

description of models shown in Equation 3.1, there is at most one concept like 8 

that −8	 ∈ 	ℒC]DEFWa^ or −8	 ∈ 	ℒC]DEFS$^, so if there is a disjoint like −8 in the 

definition of one of the two models, for each primitive concept in the definition 

of the other model, this rule must be executed once.   

Rule 4 («¥ª¬­¥®§ª)     

∃ − 8 ∈ 	ℒC]DEFS$^                                                  
∃ − 8C ∈ 	ℒC]DEFWa^      ⇒   Dissim�k ≔	Dissim�k + α�(1 −	}2������(�,			�q))  
                                                ,    0 ≤ }2 ≤ 1 ,  α� ≥ 0    
Explanation and Justification  

If there is a concept like 8 that −8	 ∈ 	ℒC]DEFWa^ and also a concept like 

8C that −8C ∈ 	ℒC]DEFWa^, then the value of α�(1 −	}2������(�,			�q)) is added 

to the previous value of Dissim�k. The more value of Dissim(D, DC) can be 

interpreted as the less chance for ℒC]DEFWa^ to include more instances which 

are also included by ℒC]DEFS$^, and therefore the more the value which has to 

be added to the previous value of Dissim�k. Since }2 is not more than 1, the 

value of α�(1 −	β2������(�,			�q)) is at most equal to α�. Such a treatment 

supports and is compatible with our introduced ideal measure because even if 

8 and 8C are disjoint, it is still possible that the two models have instances in 

common. Dissim(8, 8C) is computed using our descriptor specific rules. 

Considering the canonical form of the description of models previously shown 

in Equation 3.1, there is at most one concept like 8 that −8	 ∈ 	ℒC]DEFS$^ and 

at most one concept like 8C that −8C ∈ 	ℒC]DEFWa^. Hence, this rule can be 

executed once at most.   

Rule 5 (¤­¶©ª)      

Assume that RNqS and RNqW  are two properties (roles) from two 

ontologies �2 and �4 respectively. If RNqS and RNqW are from the same 

ontology, then we have �2 = �4. There are properties like RNS and RNW  in the 

ontological hierarchy of properties from the ontologies �2 and O4 respectively 



that do not have any superproperty and they also subsume RNqS and RNqW 
respectively (RNqS ⊑ RNS, RNqW ⊑ RNW). δNqSNqW  is the probability for         

RNqS ⊑ RNqW , and δNqWNqS  is the probability for RNqW ⊏ RNqS . So, we have    

δNqSNqW  + δNqWNqS ≤ 1. Then the semantic dissimilarity between RNqS and RNqW 
represented as RDissim(Rk′1 , Rk′2) is computed by the following rule:  

RNS 	, RNqS ∈ 	�2 , RNqS ⊑ RNS                                         

RNW 	, RNqW ∈ 	�4 , RNqW ⊑ RNW  

∄RNq . (RNS ⊏ RNq) ∈ 	�1  ,   ∄RNq . (RNW ⊏ RNq) ∈ 	�2            ⇒    

δNqSNqW  = P(RNqS ⊑ RNqW) ,  δNqWNqS  = P(RNqW ⊏ RNqS)                    

    RDissim(RNqS , RNqW , ρ, θ) ≔ αNqSNqW (
θ¢½	¾XqSXqW�	¿¢À¾XqWXqS�		2	
	¾XqSXqW
		¾XqWXqS

¾XqSXqW�	¾XqWXqS
)                

,  αk′1k′2  =	1 − δNqSNqW − δNqWNqS + |MHD]RNS , RNqS^ 	− 	MHD]RNW , RNqW^| 
,  0	 ≤ 	αA 	≤  α�  ,  ρ = empty(ρ) ? 1 : ρ ,  θ = empty(θ) ? 1 : θ             

,  �2 = �4 	⇒ TMHD]RNS , RNqS^ 	− 	MHD]RNW , 	RNqW^T 	≈ 		MHD]RNqS , RNqW^ 
m�8(!Â , !Âq) is the minimum hierarchical distance between RN and RNq  

in the ontological hierarchy. The default value for ρ and θ is 1 when they are 

not provided as arguments. αA and α� are adjustable factors.  

Explanation and Justification:  

As it has been shown in Rules 7 and 10, the ρ and θ factors can be used 

as multiplier or negator of the generally determined α� and αA factors 

respectively if needed. As it is clear, the two factors αA and α� can make 

RDissim(Rk′1 , Rk′2) asymmetric relative to RNqS and RNqW . Only if αA = α�, and 

θ = ρ, then RDissim(Rk′1 , Rk′2) is symmetric. The less the probability for 

RNqS ⊑ RNqWor the less the probability for RNqW ⊏ RNqS, the more the 

dissimilarity between RNqS and RNqW  is and if these probabilities tend to 0, then 

RDissim(Rk′1 , Rk′2) tends to infinite (∞). The dissimilarity between two 

properties have to be infinite if none of them subsumes the other. The effect 

and role of this rule is illustrated where we present the rules which handle the 

restrictions on properties (roles). So, this rule supports and is compatible with 

our introduced ideal measure. If RNqS and RNqW are from the same ontology, 

then there are only three possible states: (δNqSNqW= 0 and δNqWNqS= 0) or 

(δNqSNqW= 1 and δNqWNqS= 0) or (δNqSNqW= 0 and δNqWNqS= 1), because we can 



make sure of the correctness or incorrectness of RNqS ⊑ RNqW  or RNqW ⊏ RNqSby 

reasoning or considering the explicit statements in the ontology, otherwise 

δNqSNqW  and δNqWNqS  can be determined by experts of the two ontologies.  

δNqSNqW= 1 ⟹ δNqWNqS= 0 ⟹ RDissim(RNqS , RNqW) = θαA|MHD]RNS , RNqS^ 	− 	MHD]RNW , RNqW^|  
ÄSÅÄWÆÇÇÇÈ  RDissim(RNqS , RNqW) = θαAMHD]RNqW , RNqS^ 
 δNqWNqS= 1 ⟹ δNqSNqW= 0 ⟹ RDissim(RNqS , RNqW) = ρα�|MHD]RNS , RNqS^ 	− 	MHD]RNW , RNqW^| 
ÄSÅÄWÆÇÇÇÈ  RDissim(RNqS , RNqW) = ρα�MHD]RNqW , RNqS^  
RNqS = RNqW  ⟹ RDissim(Rk′1 , Rk′2) = 0.  

Considering our example, we have:  

RDissim(R, R) = 0;   

RDissim(R, S) = α�MHD(R, S) = 2 × 1 = 2; 

RDissim(S, R) = αAMHD(R, S) = 1 × 1 = 1;   

Rule 6 (value restrictions ∀)      

∀RN. G�N ∈ 	ℒC]DEFS$^                                           
∃(∀RNq . GkNq ∈ 	ℒC]DEFWa^)       ⇒ Dissim�k ≔ Dissim�k + α�

������(ÉÊX,			ÉËXq)
ÌWÍÎÊÏÏÊÐÑÍX,				ÍXqÒ

  

                                                        ,  0 ≤ α�   ,     1 < }4   
Explanation and Justification: 

Considering the canonical form of the description of models previously 

shown in Equation 3.1, for each property like RN, there is at most one restriction 

like ∀RN. G�N in the description of the ℒC]DEFS$^ model and for each property like 

RNq , there is at most one restriction like ∀RNq . GkNq  in the description of the 

ℒC]DEFWa^ model. If the ℒC]DEFS$^ model does not have any ∀-type statement for a 

property like R, we add one to the description of that model as follows: ∀R. A (A 

represents the range of the property R). This is done to make possible effective 

comparison between the two models from the perspective of all ∀-type statements 

in the definition of the ℒC]DEFWa^ model that make it more restricted than the 

ℒC]DEFS$^ model. According to the above rule, if there is a restriction like 

∀RNq . GkNq in the description of the ℒC]DEFWa^ model, for each restriction like 

∀RN. G�N in the description of the ℒC]DEFS$^ model, we have to add the value of  



α�
������(ÉÊX,			ÉËXq)
ÌWÍÎÊÏÏÊÐÑÍX,				ÍXqÒ

 to the previous value of Dissim�k. The more value of 

Dissim(G�N,			GkNq) if we have RDissim ÑRk, 	Rk′Ò ≠ 	∞, can be interpreted as the 

less chance for ℒC]DEFWa^ to include more instances which are also included by 

ℒC]DEFS$^, and therefore the more the value which has to be added to the previous 

value of Dissim�k. For instance, If , 2 and , 4 are from the same ontology, G�N 

and GkNq  are disjoint (i.e. Dissim(G�N,			GkNq) = ∞), and RDissim ÑRk, 	Rk′Ò ≠ 	∞, 

then the two models ℒC]DEFS$^ and ℒC]DEFWa^ do not have any common instance 

and they are disjoint. The same result is accordingly yielded using this rule. 

Dissim(G�N,			GkNq) is computed using our descriptor specific rules. Considering 

our example, we have:        

Dissim22: = Dissim22 +	α�	( ������(�,			�)ÌWÍÎÊÏÏÊÐ(Í,			Í)
+ ������]�,			(�	⊓�)^

ÌWÍÎÊÏÏÊÐ(Ô,			Ô)
+ ������]�,			(�	⊓�)^

ÌWÍÎÊÏÏÊÐ(Í,			Ô)
+

	 ������(�,			�)ÌWÍÎÊÏÏÊÐ(Ô,			Í)
) = 0 + 1× (

�
4Õ + 

�
4Õ + 

�
4W + 

A
4S) = 16.5;    

Dissim42: = Dissim42 +	α�	( ������(�,			�)ÌWÍÎÊÏÏÊÐ(Í,			Í)
+ ������]�,			(�	⊓�)^

ÌWÍÎÊÏÏÊÐ(Ô,			Ô)
+ ������]�,			(�	⊓�)^

ÌWÍÎÊÏÏÊÐ(Í,			Ô)
+

	 ������(�,			�)ÌWÍÎÊÏÏÊÐ(Ô,			Í)
) = 3 + 1× (

�
4Õ + 

�
4Õ + 

�
4W + 

A
4S) = 19.5; 

Rule 7 (value and existential restrictions ∀ & ∃)    

∀RN. G�N ∈ 	ℒC]DEFS$^                                          
∃(∃RNq . HkNq) ∈ ℒC]DEFWa^     ⇒   

Dissim�k ≔ Dissim�k +	α�MaxÑ∃ÖXq .×ËXqÒ∈ℒq]rstWu^(
Dissim]G�N, HkNq^
}4Ö������]	ÖXq ,			ÖX,			P^

) 
                        ,   0 ≤ α�  ,   1 < }4   
Explanation and Justification:  

Considering the canonical form of the description of models previously 

shown in Equation 3.1, for each property like RN, there is at most one 

restriction like ∀RN. G�N in the description of the ℒC]DEFS$^ model and if there 

is a restriction like ∃RNq . HkNq in the description of the ℒC]DEFWa^ model, then 

according to this rule, we have to add the maximum value among the values of 

¢Ø������ÑÉÊX,			×ËXqÒ
ÌWÍÎÊÏÏÊÐÑ	ÍXq,			ÍX,			ÙÒ

 for all restrictions like ∃RNq . HkNq ∈ ℒC]DEFWa^, to the 

previous value of Dissim�k. If RDissim Ñ	Rk′ ,			Rk,			∞Ò ≠ 	∞, the more value of 



Dissim]G�N,			HkNq^ can be interpreted as the less chance for ℒC]DEFWa^ to 

include more instances which are also included by ℒC]DEFS$^, and therefore the 

more the value which has to be added to the previous value of Dissim�k, but if 

the probability for 	RN ⊏ 	RNq  is not 0, then RDissim(	RNq ,			RN,			∞) is infinite 

(∞), and the value of 
¢Ø������ÑÉÊX,			×ËXqÒ
ÌWÍÎÊÏÏÊÐÑ	ÍXq,			ÍX,			ÙÒ

 is considered as 0. Such a treatment 

supports and is compatible with our ideal measure, because if 	RN ⊏ 	RNq, the 

two restrictions ∀RN. G�N and ∃RNq . HkNq are not logically interconnected with 

respect to the introduced ideal measure and therefore they do not have to be 

compared, for instance even if HkNq and G�N are disjoint, it is still possible that 

the two models have instances in common from the perspective of these two 

restrictions, but in the case that RNq ⊑ 	RN	, if HkNq and G�N are disjoint, then 

the two models do not have any common instance. Dissim]G�N,			HkNq^ is 

computed using our descriptor specific rules, and RDissim(RNq , 	RN, ∞) is 

computed using Rule 5. For each restriction like ∀RN. G�N ∈ 	ℒC]DEFS$^, this 

rule is executed once. Considering our example, we have:          

Dissim22: = Dissim22 + α�Max(������]�,			(�	⊓�)^ÌWÍÎÊÏÏÊÐ(Ô,			Í,			Ù)
) = 16.5 +  α�( �4S) = 18.5;      

Dissim42: = Dissim42 + α�Max(������]�,			(�	⊓�)^ÌWÍÎÊÏÏÊÐ(Ô,			Í,			Ù)
) = 19.5 +  α�( �4S) = 21.5;  

Rule 8 (existential restrictions ∃)    

∃RN. H�N ∈ 	ℒC]DEFS$^                 
∃(∃RNq . HkNq) ∈ 	ℒC]DEFWa^      ⇒  Dissim�k ≔ Dissim�k +	α�(1 −	}2	ÚS)    
RDissim(RN, 	RNq) ≠ 	∞   

,  Û2 =      Min(∃ÖX.×ÊX)∈ℒq]rstSI^(MaxÑ∃ÖXq .×ËXqÒ∈ℒq]rstWu^(
������Ñ×ÊX,	×ËXqÒ
ÌWÍÎÊÏÏÊÐÑÍX,	ÍXqÒ

))   

                 m2      if   ∄(∃RN. H�N) ∈ 	ℒC]DEFS$^ and ∃(∃RNq . HkNq) ∈ 	ℒ
C]DEFWa^ 

 ,  0 ≤ α� ,  0 ≤ }2 ≤ 1, 1 < }4 , m2: an adjustable factor with a relatively big value      
Explanation and Justification   

If there are restrictions like ∃RN. H�N in the description of the ℒC]DEFS$^ 
model and there are restrictions like ∃RNq . HkNq  in the description of the 

ℒC]DEFWa^ model, then according to this rule, we have to find the minimum 



value as Û2, for all restrictions like ∃RN. H�N ∈ 	ℒC]DEFS$^, among the 

maximum values of 
������Ñ×ÊX,	×ËXqÒ
ÌWÍÎÊÏÏÊÐÑÍX,	ÍXqÒ

 for all restrictions like ∃RNq . HkNq ∈

	ℒC]DEFWa^ with RDissim(RN, 	RNq) ≠ 	∞, and then add the value of        

α�(1 −	}2	ÚS) to the previous value of Dissim�k. If there is not any restriction 

like ∃RN. H�N in the description of the ℒC]DEFS$^ model, but there are some in 

the description of the ℒC]DEFWa^ model, then Û2 = m2. m2 is an adjustable 

factor which can be a relatively big number. Since 0 ≤ }2 ≤ 1, we have 0 

≤ α�]1 −	}2	ÚS^ 	≤ α�. The value of  α�]1 −	}2	ÚS^ is at most equal to α� 
when Û2 is infinite (∞), so there is an upper limit for the value which may be 

added to Dissim�k by the action of this rule. Such a treatment is necessary 

because the high values for 
������Ñ×ÊX,	×ËXqÒ
ÌWÍÎÊÏÏÊÐÑÍX,	ÍXqÒ

 can not be directly considered as a 

criterion for determining the extent to which the ℒC]DEFWa^ model includes 

instances which are also included by the ℒC]DEFS$^ model. For instance, even 

if the values of Dissim]H�N, 	HkNq^ for all restrictions like ∃RN. H�N ∈
	ℒC]DEFS$^ and ∃RNq . HkNq ∈ 	ℒC]DEFWa^ are infinite, then it is still possible that 

the two models have instances in common. Dissim]H�N, 	HkNq^ is computed 

using our descriptor specific rules and RDissim(RN, 	RNq) is computed using 

Rule 5. This rule is executed once at most. Considering our example, we have:           

Û2 =  ������]�,			(�	⊓�)^ÌWÍÎÊÏÏÊÐ(Í,			Ô)
 = 

	������]�,			(�	⊓�)^
4W  = 

	�
�  = 1;  

Dissim22: = Dissim22 + α�(1 −	β2	ÝS) = 18.5+ 2 (1 – (	24)2) = 19.5;    

Dissim42: = Dissim42 + α�(1 −	β2	ÝS) = 21.5 + 2 (1 – (	24)2) = 22.5;    

 

Rule 9 (property-value existence restriction ∋)   

∋ RN. dÞ ∈ 	ℒC]DEFS$^                                   
∋ RNq . dÞq ∈ 	ℒC]DEFWa^        ⇒ Dissim�k ≔ Dissim�k +	α2�(1 −	}2	ÚW)   
Û4 	= 	ßß|{dÞq| 	 ∋ RNq . dÞq 	 ∈ 	ℒC]DEFWa^} − {dÞ| ∋ RN. dÞ ∈ 	ℒ

C]DEFS$^}|
}4Ö������]ÖXq ,	ÖX^NqN

 

                                  ,  0 ≤ α2� ,  0 ≤ }2 ≤ 1,  1 < }4   
 



Explanation and Justification:  

If for any pair of properties like (RN, RNq) with RDissim(RNq , 	RN) ≠ ∞, 

there is an instance like dÞq  for which the ∋ RNq . dÞq  restriction exists in the 

description of the second model, but there is not any restriction like ∋ RN. dÞq 
in the description of the first model, then this can be interpreted as the less 

chance for ℒC]DEFWa^ to include more instances which are also included by 

ℒC]DEFS$^ from the perspective of these two restrictions, and therefore the 

more the value which has to be added to the previous value of Dissim�k. Such 

an interpretation can be realized by subtracting the {dÞ| ∋ RN. dÞ ∈ 	ℒC]DEFS$^} 
set from the {dÞq| 	 ∋ RNq . dÞq 	 ∈ 	 ℒC]DEFWa^} set in the equation given for Û4. 

This rule is executed once. Considering our example, we have:        

Û4 	= 	 |{à³}
	{àS,àW}|ÌWÍÎÊÏÏÊÐ(Í,			Ô)
	= 2

ÌWÍÎÊÏÏÊÐ(Í,			Ô)
= 	 24W = 	0.25;  

Dissim22: = Dissim22 + α2�(1 −	β2	ÝW) = 19.5 + 2 (1 – (	24)�.4A) = 19.82;  

Dissim42: = Dissim42 + α2�(1 −	β2	ÝW) = 22.5 + 2 (1 – (	24)�.4A) = 22.82;   

 

Rule 10 (Cardinality related Restrictions ≥RX &	 ≤YX &	 =UX)      

This rule handles the expressivity of cardinality related restrictions in 

estimating our introduced ideal measure. First, we unfold the existing exact 

cardinality restrictions (=UX RN. &) to their equivalent minimum and maximum 

cardinality restrictions (≥UX RN. & & ≤UX RN. &). Also, if for a property like 

RN, there are not restrictions like ≥RÊX RN. & or ≤YÊX RN. & in the description of 

the ℒ′]DEFS$^ model, we respectively add the restrictions ≥� RN. & or 

≤´W RN. & to that model to make possible effective comparison between the 

two models. m4 is an adjustable factor bigger than all of �kNq which have been 

used for defining the restrictions like ≤YËXq RNq . & in the description of 

ℒC]DEFWa^. In fact, m4 is used as a replacement for infinite (∞).    

=UÊX RN. & ∈ ℒ
C]DEFS$^   ⇒ ℒC]DEFS$^ := ℒC]DEFS$^ 	∪ {≥UÊX RN. &, ≤UÊX RN. &}    

=UËXq RNq . & ∈ ℒ
C]DEFWa^  ⇒ ℒC]DEFWa^ := ℒC]DEFWa^ 	∪ {≥UËXq RNq . &, ≤UËXq RNq . &}                

if ∄(≥RÊX RN. &) ∈ 	ℒ
C]DEFS$^  ⇒ ℒC]DEFS$^ = ℒC]DEFS$^ 	∪ {≥� RN. &}       

M4 > Max	Nq∈â (rkNq), W={kC| ≤YËXq RNq . & ∈ ℒ
C]DEFWa^},  m4: an adjustable factor     



if ∄(≤YÊX RN. &) ∈ 	ℒ
C]DEFS$^  ⇒ ℒC]DEFS$^ = ℒC]DEFS$^ 	∪ {≤´W RN. &}        

Then, the following equations are used for computing the value which 

has to be added to the previous value of Dissim�k:   
Dissim�k ≔ Dissim�k +	α22∑ å1]k, k′^(N,			Nq)∈	oS 	+ 	α24 ∑ å2]k, k′^(N,			Nq)∈	oW 	+ 

α2;( ∑ å3]k, k′^(N,			Nq)∈	o³  + ∑ å4]k, k′^(N,			Nq)∈	oè  + ∑ å5]k, k′^(N,			Nq)∈	o½  + 

∑ å6]k, k′^(N,			Nq)∈	oÀ  + ∑ å7]k, k′^(N,			Nq)∈	oë  + ∑ å8]k, k′^(N,			Nq)∈	oØ  + 

∑ å9]k, k′^(N,			Nq)∈	oî  )  

       ,   0 ≤ α22  ,   0 ≤ α24 ,   0 ≤ α2; ,   1 < }4         

, å2(k, kC) = ( ïð(RËXq 	,			RÊX)	
	ÌWRDissimÑ	ÍXq,			ÍX,			ÙÒ

)    

, å4(k, kC) = ( ïð(YÊX	,			YËXq)
ÌWRDissimÑ	ÍX,				ÍXq ,			ÙÒ

)    

, å;(k, kC) = RSPÑc�N	, �kNq , RDissim(RN, 	RNq ,			∞,			0)Ò    
, å�(k, kC) = RSPÑckNq , ��N	, RDissim(RNq , RN,			∞,			0)Ò       
, åA(k, kC) = RSPÑc�N	, ekNq , RDissim(RN, 	RNq , ∞,			0)Ò  
, å�(k, kC) = RSPÑekNq , ��N	, RDissim(RNq , RN,			∞,			0)Ò  
, å�(k, kC) = RSPÑe�N	, �kNq , RDissim(RN, 	RNq ,			∞,			0)Ò 
, å�(k, kC) = RSPÑckNq , e�N	, RDissim(RNq , RN, ∞,			0)Ò  
, å�(k, kC)  = RSP Ñe�N, ekNq , RDissim(RN, 	RNq ,			∞,			0)Ò + RSP ÑekNq , e�N, RDissim(RNq , RN,			∞,			0)Ò 
,  SP(ñ , ò) =       ñ – ò      if   ñ ≥ ò          , RSP(ñ , ò, ó) =        

2
q       if  ñ > ò  

                            0            if   ñ < ò                                             0      if  ñ ≤ ò    
, �2 = {(k,			kC)	| ∃(≥RÊX RN. &) ∈ 	ℒ

C]DEFS$^,  ∃(≥RËXq RNq . &) ∈ 	ℒ
C]DEFWa^}             

, �4 = {(k,			kC) | ∃(≤YÊX RN. &) ∈ 	ℒ
C]DEFS$^, ∃(≤YËXq RNq . &) ∈ ℒ

C]DEFWa^}           

, �; = {(k,			kC) | ∃(≥RÊX RN. &) ∈ 	 ℒ
C]DEFS$^, ∃(≤YËXq RNq . &) ∈ ℒ

C]DEFWa^}              

, �� = {(k,			kC) | ∃(≤YÊX RN. &) ∈ 	ℒ
C]DEFS$^, ∃(≥RËXq RNq . &) ∈ ℒ

C]DEFWa^}               

, �A = {(k,			kC) | ∃(≥RÊX RN. &) ∈ 	 ℒ
C]DEFS$^, ∃(=UËXq RNq . &) ∈ ℒ

C]DEFWa^}               

, �� = {(k,			kC) | ∃(≤YÊX RN. &) ∈ 	ℒ
C]DEFS$^, ∃(=UËXq RNq . &) ∈ ℒ

C]DEFWa^}    

, �� = {(k,			kC) | ∃(=UÊX RN. &) ∈ 	ℒ
C]DEFS$^, ∃(≤YËXq RNq . &) ∈ ℒ

C]DEFWa^}              

, �� = {(k,			kC) | ∃(=UÊX RN. &) ∈ 	ℒ
C]DEFS$^, ∃(≥RËXq RNq . &) ∈ ℒ

C]DEFWa^}                

, �� = {(k,			kC) | ∃(=UÊX RN. &) ∈ 	ℒ
C]DEFS$^, ∃(=UËXq RNq . &) ∈ ℒ

C]DEFWa^}            



Explanation and Justification:  

Considering Rule 5, if the probability for RN ⊏ RNq  is not 0, then 

RDissim(RNq , 	RN, ∞) is infinite (∞), and if the probability for RNq 	⊑ RN is 1, 

then RDissim(RNq , 	RN, ∞,			0) is 0. Such a treatment supports and is 

compatible with our ideal measure, for example, in the case of RN ⊏ RNq , the 

min-cardinality restrictions defined over the two properties RN and RNq  are not 

logically interconnected with respect to the introduced ideal measure and 

therefore nothing is added to the previous value of Dissim�k as       

RDissim(Rk′ , 	Rk,			∞) is infinite and as a result the value of 
ïð(RËXq 	,			RÊX)	

	ÌWRDissimÑ	ÍXq,				ÍX,			ÙÒ
 

is 0, but in the case of RNq ⊑ RN, the two min-cardinality restrictions are 

logically interconnected and therefore they have to be compared.    

If ≥RÊX RN. & ∈ 	ℒ
C]DEFS$^ and ≥RËXq RNq . &	 ∈ 	ℒ

C]DEFWa^, then if       

ckNq  ≥ c�N , we have SP(ckNq ,			c�N) = ckNq −	c�N and if c�N > ckNq , we 

have SP(ckNq ,			c�N) = 0. In the first case, the value of 
¢SS(RËXq
	RÊX)	

	ÌWÍÎÊÏÏÊÐÑÍXq,			ÍX,			ÙÒ
 is 

added to the previous value of Dissim�k considering the given equation for 

å2(k, kC), but in the second case, nothing is added to Dissim�k. Such a 

treatment supports and is compatible with our ideal measure, because if 

Dissim(RNq , RN, ∞) ≠ ∞, then in the first case the second model (i.e. 

ℒC]DEFWa^) is more restricted than the first one (i.e. ℒC]DEFS$^) from the 

perspective of the minimum cardinality restrictions (≥) defined over the two 

properties RN and 	RNq , and this can be interpreted as the less chance for the 

ℒC]DEFWa^ model to include more instances which are also included by 

ℒC]DEFS$^, and therefore the more the value which has to be added to the 

previous value of Dissim�k. But, in the case that the first model is more 

restricted than the second one i.e. c�N > ckNq , since our dissimilarity measure 

has to compute the extent to which the second concept is more restricted than 

the first concept and not vice versa, nothing is added to the previous value of 

Dissim�k. The explanation and justification for the function å4(k, kC) is similar 

to the explanation given above for the function å2(k, kC). 



The functions å;(k, kC), … , å�(k, kC) investigate whether the two 

models are disjoint or not considering the role cardinality restrictions, and if 

they are disjoint, Dissim�k is set as infinite. For instance, if	 ≥RÊX RN. & ∈
	ℒC]DEFS$^ and ≤YËXq RNq . & ∈ 	ℒ

C]DEFWa^, then if  c�N > �kNq  , we have 

Z;(k, kC) = RSP Ñc�N	, �kNq , RDissim(RN, 	RNq , ∞,			0)Ò	= 
2

Ö������]ÖX,	ÖXq ,			P,			�^
, and 

if the probability for RN 	⊑ RNq  is 1, and therefore RDissim(RN, 	RNq , ∞,			0) =
0, then Z;(k, kC) and therefore Dissim�k are infinite considering the given 

equations for them, because in these conditions, the two models do not have 

any common instance. Hence, such a treatment is also compatible with our 

introduced ideal measure and supports it.  This rule is executed for all pairs of 

properties like (RN, 	RNq) over which cardinality related restrictions have been 

defined. Considering our example, we have:            

Dissim22: = Dissim22 + ¢SSïð(A	,			2)	
	ÌWÍÎÊÏÏÊÐ(Ô,			Í,			Ù)

+ ¢SSïð(A	,			�)	
	ÌWÍÎÊÏÏÊÐ(Ô,			Ô,			Ù)

= 20.5 + 2	×	(A
2)
4S 	+

2	×	(A
�)
4Õ  =  19.82 + 	�

4 	+
	A
2 =  26.82;    

Dissim42: = Dissim42 + ¢SSïð(A	,			2)	
	ÌWÍÎÊÏÏÊÐ(Ô,			Í,			Ù)

+ ¢SSïð(A	,			�)	
	ÌWÍÎÊÏÏÊÐ(Ô,			Ô,			Ù)

= 22 + 2	×	(A
2)
4S 	+

2	×	(A
�)
4Õ  =  22.82 + 	�

4 	+
	A
2 =  29.82;       

 

Rule 11 (Enumerations)   

∃	÷ = {#2, . . . , #0} ∈ 	ℒC]DEFS$^                                   
∃	ø = {#C2, . . . , #C0q} ∈ 	ℒC]DEFWa^       ⇒ Dissim�k ≔ Dissim�k +	   
                                                                                 α2�(|�	∪	�|		|�	∩	�| * 

|�	
	�|	
	|�| );   

                                                            ,  0 ≤ α2�  
We also have: Dissim;2= Dissim22, and considering Equation (3.4), 

|MHD(�, , 2)  - MHD(�, , 4)| = |3 – 2| = 1 < |MHD(�, , 2) - MHD(�, , 4)| =    

|4 – 2| = 2 => m�8$a  = 1; (1 ≤ ` ≤ 3,			1 ≤ b ≤ 1), So we have:           

Dissim(, 2, , 4) = m`9	2n$n;,			2nan2 (8`ee`c$a +m�8$a) = 27.82;        

Considering the rules presented in this section, it is clear that each rule is 

executable, applicable and computable as we have used it for computing the 

similarity/dissimilarity between the two example concepts. The similarity 

values resulted from applying the proposed measure can be interpreted as the 

extent to which the second concept includes instances which are also included 

by the first concept, because the proposed measure tries to estimate the 



introduced ideal measure in computing the similarity/dissimilarity between 

concepts. In fact, these descriptor specific rules tries to estimate the DD part of 

the ideal measure (i.e. Equation 2.1) that means Dissim�k (which is computed 

by the rules) tries to estimate DD(, 2, , 4) defined in Equation 2.1.    

The probability parameters (i.e. δES	, 	δ
C
ES	, δNqSNqW , and δNqWNqS) used in 

defining our measure are determined by domain experts if and only if the two 

compared concepts are from different ontologies. The experts only need to 

determine these parameters for roles and primitive concepts of the two 

ontologies and not for complex concepts. Hence, although our method for 

computing the similarity/dissimilarity between two concepts from different 

ontologies is semi-automatic but it makes simpler such a complex problem.    

The domain experts also need to determine the adjustable factors used in 

the equations of the rules (i.e. α� (1≤ i ≤14), m2, m4, }2, }4, and μ). 

Considering the rules, clearly α�s are just linear multiplier factors which 

increase or reduce the effect of various dissimilarity functions used in the 

rules. There is no any upper limit for the values of α� (1≤ i ≤14) since α�s are 

linearly used in computing Dissim�k and there is not any upper limit for the 

values of Dissim�k. Because Dissim�k is ranged from zero (0) to infinite (∞) 

contrary to Sim(CN2, CN4) which is ranged from 0 to 1. By using α�s, the 

experts can control the effect of various types of descriptors on the finally 

computed dissimilarity value. For instance by using α� factor, the experts can 

increase or reduce the effect of property value restrictions on the finally 

computed dissimilarity value.    

}2 is an adjustable factor used in Rules 4, 8, and 9. Considering these 

rules and the fact that 0 ≤ }2 ≤ 1, it is clear that }2 has always been used in 

the form of αk(1 −	}2	Ú) (j=4, 9, 10) when the value of the descriptor specific 

function (i.e. Û) does not have to directly affect the computed dissimilarity 

value, because we have heuristically recognized the need for such a 

mechanism in the cases reflected in Rules 4, 8, and 9 in order to correctly 

estimate the introduced ideal similarity metric. So, }2 can be used for 

adjusting this mechanism used in Rules 4, 8, and 9.    

}4 is an adjustable factor used in all the rules handling the property (role) 

restrictions (i.e., Rules 6, 7, 8, 9, and 10). Considering these rules and the fact 



that 1 ≤ }4, it is clear that }4 has always been used in the form of  

2
ÌWÍÎÊÏÏÊÐÑÍX,	ÍXqÒ

 to control the effect of roles dissimilarity value on the value of 

the corresponding descriptor specific functions. For instance, when }4 = 1, the 

roles dissimilarity value does not affect the value of the corresponding 

function, but by increasing the value of }4, the roles dissimilarity value 

inversely affects the value of the corresponding function.     

m2 and m4 are adjustable factors with a relatively big value used in 

Rules 8 and 10 for the cases in which a specific type of property restriction 

does not exist in the description of one of the two compared models but it 

exists in the description of the other model. So, by using the adjustable factors 

m2 and m4, a balance between the two compared model descriptions is 

established that leads to an effective comparison.  

4. Discussion and Comparison with other Approaches  

In our previous research work [25], we extended the previously proposed 

theories for logic based matching of web services that were based on simple 

subsumption reasoning. We proposed an ideal semantic similarity metric to extend 

simple subsumption based similarity metrics in order to include the states in which 

the two compared concepts overlap but none of them subsumes the other. The 

introduced ideal metric is more perfect than simple subsumption based ones to be 

used in the field of web service retrieval since it can increase the recall-based 

performance of the web service matchmakers which utilize semantic similarity 

measures for web services matching and composition [25]. But since the 

introduced ideal measure is not generally actually computable, we heuristically 

invented a number of computable rules presented in Section 3 in this paper, which 

collectively try to estimate the ideal measure based on OWL descriptions of 

concepts in ontologies. Hence, by presenting our proposed measure as a set of 

computable and applicable rules, we actually demonstrated that it is possible to 

compute the similarity/dissimilarity between concepts based on the ideal metric 

introduced in Section 2 [25].     

However as discussed in [25], there are two important dimensions along 

which the conditions can be changed for semantic similarity measurement:  

1) DL Expressivity Usage that is the complexity of concept definitions in 

ontologies or in other words, how much the expressivity of description logics has 



been used for defining or describing concepts in ontologies. As logic based 

similarity measures compute the similarity between concepts by handling the 

expressivity of DLs to an extent, ontologies with proper DL Expressivity Usage 

are needed for fair and complete evaluation of such measures.     

2) Proportion of Overlapped Concepts that is the extent to which there 

are pairs of concepts in ontologies that overlap but none of them subsumes the 

other. Generally, when we compare two concepts, there are three possible 

situations: 1) The two concepts are disjoint i.e., the intersection of them is not 

satisfiable, 2) One of the two concepts subsumes the other, and 3) The two 

concepts overlap i.e., the intersection of them is satisfiable but none of them 

subsumes the other. Considering all pairs of concepts in ontologies, it seems for 

many of existing ontologies, the proportion of concept pairs belonging to the third 

category is much less than the proportion of concept pairs belonging to the first 

and second categories. As some logic based similarity metrics, might measure the 

similarity/dissimilarity between two concepts based on the extent to which the two 

concepts overlap, concept pairs from the third category are also needed for fair 

and complete evaluation of those similarity measures. 

Our proposed measure is able to handle the expressivity of DL based 

ontology languages to a considerable extent. However, the reliability and 

performance of logic based similarity measures including our proposed measure 

depends on the “DL Expressivity Usage” of the ontologies in which the compared 

concepts have been defined and described. So, if concepts are poorly described in 

ontologies without an effective usage of the expressivity of description logics, 

using a sophisticated logic based similarity measure like our proposed measure, 

does not lead to a good performance. On the other hand, since the ability of our 

proposed measure in handling the expressivity of description logics is limited, if 

concepts are described in ontologies with a high usage of the expressivity of 

description logics beyond the scope of the DL Expressivity Usage which can be 

handled by our measure, then using our proposed measure does not also lead to a 

good performance. Anyway, using our proposed measure in the scope of the DL 

Expressivity Usage which can be handled by it (reflected in the rules presented in 

Section 3) can lead to a good performance. It should be also mentioned that it 

seems many of the real ontologies are simple and most of the semantic constructs 

of highly expressive ontology languages such as OWL, have not been used for 



building them. Hence, using sophisticated similarity/dissimilarity measures such 

as one presented in this paper on the ground of such simple ontologies does not 

intuitively theoretically make any significant difference in comparison with 

simple measures. It also seems the Proportion of Overlapped Concepts in many of 

existing ontologies is low. So, using our proposed similarity/dissimilarity measure 

on the ground of those ontologies does not intuitively theoretically make any 

significant difference in comparison with simple subsumption based measures 

since one important facet of our proposed measure is its ability to compute the 

extent to which two concepts overlap even if none of them subsumes the other.   

 As demonstrated in our previous research paper [25], the quality (i.e. 

effectiveness) of DL-based similarity measures which are used in the field web 

services retrieval can be evaluated by answering the questions about how well 

they are able to precisely estimate the introduced ideal similarity metric [25]. In 

Section 3, we have presented the descriptor specific rules of our proposed measure 

that try to estimate the introduced ideal measure from their particular descriptor-

specific perspectives. In fact, the most important difference between our proposed 

measure and the most of other DL-based measures, which are able to handle the 

expressivity of DL-based ontology languages to an extent, is that they do not try 

to directly estimate the ideal similarity metric introduced in Section 2 [25]. Our 

proposed DL based measure can be compared with other DL based measures 

proposed in the literature in order to investigate how well it is able to estimate the 

ideal measure relative to other ones, although some of the proposed measures may 

not try to estimate the ideal similarity metric at all.     

The authors in [28], present a DL-based approach for semantic matching of 

web services. It seems their proposed DL-based measure, represented as a pseudo 

code, tries to estimate the introduced ideal similarity metric although they have 

not exactly specified the semantics of similarity (values) in their research paper. 

Their proposed measure is not also as flexible and precise as our measure. They 

represent their similarity/dissimilarity measure in the form of a pseudo code but 

we have chosen a rule based representation that makes our measure more flexible, 

extensible, and understandable considering the facts that our measure is 

essentially much more sophisticated than theirs and we have used a number of 

adjustable factors which makes our measure more flexible. While their measure 

considers the restrictions defined on the cardinality of properties, but it handles 



them inadequately just by adding constant values (i.e. 1) to the overall distance 

between two concepts when there is difference between the two compared 

descriptors in the semantic description of the two concepts. On the other hand, 

their measure has not been devised in a way to precisely estimate the introduced 

ideal measure. For instance, if there are restrictions like ≥R R. & and ≤0 R. & in 

the semantic description of two compared concepts respectively and we have 

c > 9 , then the two concepts are disjoint and cannot have any common instance, 

and therefore their dissimilarity (or distance as used in [28]) must be infinite (∞) 

according to our introduced ideal measure, but their measure is not able to 

recognize this state while our proposed measure is able to recognize this state 

(rule (10) in section 3.3) and some other important similar states. At least the 

measure proposed in [28] leaves the disjoint states to be recognized by the 

underlying reasoner although the underlying reasoner may not be able to 

recognize many of such states. Their proposed measure also handles the value and 

existential restrictions simply by increasing the distance of the two compared 

concepts by the value computed for the distance between the two restricting 

concepts, while our measure is able to handle such descriptors much more 

precisely in order to estimate the introduced ideal measure (rules (6), (7), and (8) 

in Section 3.3).    

Some of the proposed DL based approaches, such as ones presented in [11] 

and [12], may handle value and existential restrictions or cardinality related 

restrictions, but they take a network-based approach to compute the similarity of 

roles (R and S) within a hierarchy that is defined as ratio between the shortest path 

from R to S and the maximum path within the graph representation of the role 

hierarchy where the universal role ù (ù	 ≡ úû 	× úû) forms the graph's root. Such 

a similarity measure for roles cannot specify whether one of the two roles 

subsumes the other or not, while answering this question is the basis of our 

measure for the similarity of roles and then the similarity of complex concepts 

which are partly defined by placing restrictions on the cardinality or values of 

those roles and as presented in Section 3.3, such a treatment with respect to the 

roles is necessary for estimating the introduced ideal measure where role 

restrictions are compared with each other.   



Finally, most of the proposed DL-based similarity/dissimilarity measures 

contrary to our proposed measure are not able to compute the 

similarity/dissimilarity between concepts from different ontologies.   

5. Conclusion and future work 

Our research work can be considered as some preliminary efforts in handling 

the expressivity of DL-based ontology languages for computing the similarity 

between concepts in the field of web service retrieval. So, we hope that besides 

the ongoing efforts for building more sophisticated and precise ontologies, such 

efforts be also continued to lead to more sophisticated semantic similarity 

measures which can be used in various areas including the field of web service 

retrieval. However, our proposed measure opens the way for ontology engineers 

to build sophisticated ontologies with high DL Expressivity Usage and high 

Proportion of Overlapped Concepts to be used in sophisticated service oriented 

applications. Because such sophisticated ontologies need to be handled based on 

the introduced ideal similarity metric so that they can be completely useful in 

service oriented applications and there is a relatively sophisticated similarity 

measure like our proposed measure which tries to estimate that ideal metric as 

precise as possible based on OWL descriptions of concepts in those ontologies.     

Our proposed measure is not able to handle the descriptors of roles 

(properties) such as ones which are described as transitive, symmetric, functional, 

or inverse functional properties that may affect the logical interpretation of the 

other types of descriptors. Such descriptors are a part of some highly expressive 

DL-based ontology languages such as OWL, but handling them based on the 

introduced ideal measure was beyond the scope of this research and it is left to 

future works. It should be also mentioned that handling the expressivity of more 

expressive ontology languages such as OWL 2 is also desired which can be 

addressed by future works.       

It is also needed to find a suitable solution to the problem of matching the 

semantic descriptions of web services in which our similarity/dissimilarity 

measure has to be used as a fundamental operation. Finally, another important 

issue is the efficiency of software system which implements such sophisticated 

similarity measures and uses them for semantic matching of web services. The 

efficiency considerations are also left to future works.   
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